
The US Army's Center for Strategy and Force Evauatio

TECHNICAL PAPER AD-A251 105

VALUE ADDED LINEAR OPTIMIZATION
OF RESOURCES (VALOR)

MARCH 1992

DuG

PREPARED BY
FORCE SYSTEMS DIRECTORATE

US ARMY CONCEPTS ANALYSIS AGENCY
8120 WOODMONT AVENUE

BETHESDA, MARYLAND 2081 4-2797

Ii 
A

*6 01 094

92-14419



DISCLAIMER

The findings of this report are not to be construed as an
official Department of the Army position, policy, or decision
unless so designated by other official documentation.
Comments or suggestions should be addressed to:

Director
US Army Concepts Analysis Agency
ATTN: CSCA-FS
8120 Woodmont Avenue
Bethesda, MD 20814-2797



SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188
1a. Report Security Classification lb. Restrictive Markings

UNCLASSIFIED

2a. Security Classification Authority 3. Distribution/Availability of Report

2b. Dedasification/Downgrading Schedule UNLIMITED

4. Performing Organization Report Number(s) 5. Meonitoring Organization Report Number(s)

CAA-TP-92-1
6a. Name of Performing Organization 6b. Office Symbol 7a. Name of Monitoring Organization

US Army Concepts Analysis (if applicable)

Agency CS CA-FSR

6c. Address (City, State, and ZIP Code) 7b. Add ress (City, State. and ZIP Code)
8120 Woodmont Avenue
Bethesda, MD 20814-2797

&a. Name of Funding/Sponsonng Organization 8b. Office Symbol 9. Procurement Instrument Identification Number

US Army Concepts Analysis Agency ifapplicable)

8c. Addres (City, State, and ZIP Code) 10. Source of Funding Numbers

PROGRAM PROJECT TASK WORK UNIT
Bethesda, MD 20814-2797 ELEMENTNO. NO. NO. ACCESSION NO

11. Title(Include Security Classification)

Value Added Linear Optimization of Resources (VALOR)

12. Personal Author(s)

LTC Andrew G. Loerch
13a. Type of Report 13b. Time Covered 14. Date of Report (Year, Month. Day) IS. Page Count

Final From OCt 91 To Mar92 1992 March 53
16 Supplementary Notation

17. COSATI Codes 18. Subject Terms (Continue on reverse if necessary and identify
by block number)

FIELD GROUP SUB-GROUP

19. Abstract (Continue on reverse if necessary and identify by block number)
Each year, the US Army procures billions of dollars worth of weapons and equipment so that its worldwide mission of
defense can be accomplished. The process of deciding what equipment to procure, in what quantities, and in what
timeframes to best respond to the threat posed by potential adversaries, is extremely complex, requiring extensive analysis.
Two techniques commonly used in this analysis are mathematical programming and cost estimation. Although they are
related through constraints on available funds for procurement, the use of nonlinear cost learning curves, which more
accurately represent system costs as a function of quantity produced, have not been incorporated into the mathematical
programming formulations that compute the quantities of items to be procured. As a result, the solutions obtained could
be either suboptimal or even infeasible with respect to budgetary limitations. In this paper, we present a mixed integer
linear programming formulation that uses a piecewise linear approximation of the learning curve costs for a more accurate
portrayal of budgetary constraints. In ziddition, implementation issues are discussed, and performance results are given.

20 Distribution/Availabity of Abstract 21 Abstract Security Classification

99 UNCLASSIFIED/UNLIMITED 0 SAMEASRPT Z OTICUSERS UNCLASSIFIED
22a. Name of Responsible Individual 22b Telephone (Include Area Code) 22c. Office Symbol

LTC Andrew G. Loerch (301) 295-1546 CSCA-FSR

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE



TECHNICAL PAPER
CAA-TP-92-1

VALUE ADDED LINEAR OPTIMIZATION OF RESOURCES
(VALOR)

March 1992

Prepared by

FORCE SYSTEMS DIRECTORATE
LTC Andrew G. Loerch

US Army Concepts Analysis Agency
8120 Woodmont Avenue

Bethesda, Maryland 20814-2797



CAA-TP-92-1

This document was prepared as part of an internal CAA project.

Accosslon For

DTIC 1:3~

ju1tiflica:Icn

Distribut o/
Availability Code9S

-a-i1 an%^"/or

Di 't special iii



VALUE ADDED LINEAR SUMMARY
OPTIMIZATION OF RESOURCES CAA-TP-92-1

-- -t, (VALOR)

THE REASON FOR PERFORMING THIS RESEARCH was to formulate a math
programming algorithm that could be used to perform acquisition strategy
optimization that dynamically incorporates nonlinear "learning curve" costs
for use in Value Added Analysis. An approximate mixed integer programming
(MIP) formulation was devised for this purpose.

THE SPONSOR was the Director, US Army Concepts Analysis Agency.

THE OBJECTIVES were to:

(1) Identify the need for dynamic learning curve costing in acquisition

strategy optimization.

(2) Formulate a specific MIP for computer solution.

(3) Implement performance-improving measures to speed the solution of the
model.

(4) Report on the performance and characteristics of the model
implementation.

THE SCOPE OFTHE PAPER was limited to analysis of the major item systems
under consideration for procurement in the Army Program Value Added Analysis
94-99 (VAA Phase II) Study.

THE MAIN ASSUMPTION of this work is: learning curve costs can be
described as an exponential function of the cumulative number of items
produced.

THE BASIC APPROACH used in this analysis was to formulate a MIP with the
objective of maximizing the effectiveness of the force subject to constraints
on budget, force structure, and production capabilities. Additional
constraints were added to improve computational performance.
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THE PRINCIPAL FINDINGS of the work reported herein are:

(1) Approximate nonlinear learning curve costs can be calculated in a
mixed integer programming algorithm.

(2) The performance of the mixed integer programming model used for cross
mission area acquisition strategy is such that extremely fast response can be
given to "what-if" type questions from study sponsors.

THIS EFFORT was directed by LTC Andrew G. Loerch, Force Systems Directorate.

COMMENTS AND QUESTIONS may be sent to the Director, US Army Concepts
Analysis Agency, ATTN: CSCA-FSR, 8120 Woodmont Avenue, Bethesda, MD
20814-2797.

Tear-out copies of this synopsis are at back cover.
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VALUE ADDED LINEAR OPTIMIZATION OF RESOURCES

CHAPTER 1

INTRODUCTION AND BACKGROUND

1-1. INTRODUCTION. Each year, the United States Army procures billions of
dollars worth of weapons and equipment so that it can accomplish its
worldwide mission of deterrence. The process of deciding what to buy, how
much, and when to best respond to the threat is extremely complex, requiring
extensive analysis. Recent work in the area of Army procurement has led to a
return on investment (ROI) approach to acquisition decisions. The ROI
approach uses cost-benefit analysis as a means of determining relative return.
Two common techniques used in this analysis are mathematical
programming and cost estimation. Although they are related through
constraints on available procurement funds, the use of nonlinear cost learning
curves, which accurately represent system costs as a function of quantity
produced, have not been incorporated into the mathematical programming
formulations that compute the quantities of items to be procured. As a result,
the solutions obtained could be either suboptimal, or even infeasible with
respect to budgetary limitations. In this paper, we present the Value Added
Linear Optimization of Resources (VALOR) Model, a mixed integer linear
programming formulation that uses a piecewise linear approximation of the
learning curve costs for a more nearly accurate portrayal of budgetary
constraints.

1-2. LEARNING CURVES

a. Learning curves are used to mathematically represent the concepc that
the more items of a particular type a factory produces, the less each item will
cost. Also known as "progress curves," "improvement curves," and
"experience curves," they were developed for use in the aircraft industry before
and during World War II. Since then, the technique has spread to many other
industries. There have been many publications describing applications,
justifications, and forms for learning curves. In 1936, Wright described the
use of learning curves in the aircraft industry. 16 Since then, literally
hundreds of articles on learning curves have been published. Dutton, et al.,
review about 300 such articles. 5

b. The current atmosphere of defense cuts requires that closer attention be
paid to weapon systems costing. The front page of the Washington Post on
November 9, 1991,13 carried the following headline:

"Cuts in Defense Budget Create New Inefficiencies."

The article accompanying this headline describes how reducing the total
quantities procured of particular weapons increases the unit costs. This effect
results in less savings than anticipated from defense cuts. Learning curve
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effects that influence the costs of weapon system acquisition alternatives must
be considexed to better understand the impact of particular changes in defense
investment.

c. The Federal government in general, and the Department of Defense in
particular has mandated the use of learning curve costing for cost estimation
of acquisition systems.4 Each government contractor must submit a DD Form
1921-2 quantitatively describing the anticipated learning behavior of their
manufacturing process. These data are used by cost analysts throughout the
acquisition process for determining contract prices, budgetary projections, and
cost and effectiveness analyses.

d. Many forms exist to mathematically depict learning effects. Probably
the most popular is the so-called power, or exponential, form which is
represented as follows:

C(y) = Ay-b, (1)

where
y = the cumulative number of items produced,

C(y) = unit cost of the yth item produced,
A = the cost of the first unit produced,
b = the learning parameter.

e. Kanton and Zangwill1l have suggested that this form of the learning
curve is deficient in that it cannot remain form-invariant under aggregation of
costs over the subcomponents of the item. However, Stump 15 describes and
justifies a method to estimate composite learning curves in the power form,
overcoming this objection. This estimate seems to do well for computing costs
at the system, rather than the component, level, and the system view is
regarded as the appropriate one for the Department of the Army program and
budget development.

1-3. OPTIMIZATION OF ACQUISITION STRATEGY. Mathematical
programming is frequently used to determine an optimal, in some sense,
funding and acquisition stream for procurement of Army equipment. In this
paragraph, several of these efforts are described.

a. In 1984, the Resource Constrained Procurement Objectives for
Munitions (RECPOM-85) Study was performed by the US Army Concepts
Analysis Agency (CAA). 8 Its purpose was to develop an optimization model
that could be used to calculate the best mix of ammunition to procure such that
the effectiveness of the force would be maximized. Prior to this effort,
requirements for ammunition were computed in an unconstrained manner.
These unconstrained requirements were then modified to take into account the
fact that sufficient funds were not available to buy the entire requirement. The
modifications that were made lacked strong analytical underpinnings and
RECPOM was performed to overcome this deficiency. A stated limitation of the
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RECPOM optimization model was that it could not consider the unit costs of
the ammunition as a function of number of items produced. As an alternative,
an average unit cost of the items was used that did not vary with quantity.
This limitation was never resolved and greatly limited the usefulness of the
methodology.

b. A more general methodology for optimizing acquisition strategy was
developed as part of the Army Aviation Modernization Tradeoff Requirements
(AAMTOR) Study, a joint effort between CAA and the Naval Postgraduate
School.2,6 The optimization model, known as Phoenix, is a large-scale, mixed
integer program whose objective is to find the minimum cost set of equipment
quantities, as well as finding the best, with respect to cost, timing of the
production periods for these items. Constraints include limits on budget, force
structure requirements, retirement of equipment, equipment upgrade, and
limits on production facilities. The size and complexity of the Phoenix Model
when it was used to consider the procurement of tactical wheeled vehicles for
the Army over the following 20- or 30-year period limited its implementation to
a large mainframe computer. This sizeable requirement for computing power
is due to the need to use integer variables for determining the optimal timing of
the production campaigns for the various systems.

c. A simplification of the Phoenix Model, called Force Modernization
Analyzer (FOMOA), was developed at CAA to perform Phoenix-like analyses
when the production campaigns for the systems under consideration are given
and fixed.3 FOMOA is a linear program without integer variables, which
greatly reduces the computing power required to solve the problem. FOMOA
was implemented on a Macintosh IIcx personal computer using spreadsheet
software. FOMOA is a relatively fast-running model, and the spreadsheet
configuration allows easy data input and output display. FOMOA has been
used to produce acquisition strategies for armored systems, wheeled vehicles,
and helicopters.

d. Neither Phoenix nor FOMOA considers learning curve costs of the
systems to be procured. Schwabauer, et al. 14 suggest the following techniques.
In order to address this problem, production quantities are assumed, a priori,
likely to be near optimal. Costs are computed that are associated with these
quantities which are then used in the budgetary constraints. When the
optimization is run, new production quantities are computed which may or
may not resemble the a priori quantities. Attempts have been made to
iteratively produce cost and quantities in hopes of convergence. However, no
such convergence has been shown to be guaranteed.

1-3
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CHAPTER2

VALUE ADDED ANALYSIS METHODOLOGY

2-1. INTRODUCTION

a. Phoenix and FOMOA have been used to produce acquisition
strategies for various systems such as helicopters or trucks. The need arose to
provide optimized acquisition strategies across system types. The Value
Added Analysis (VAA) methodology was developed by CAA to provide these
strategies as well as other analysis to support decisionmaking necessary to
build the Army budget. The objective of the VAA optimization module is to
maximize the effectiveness of the force subject to constraints on budget, force
structure, and production capability.

b. The VAA methodology is modular, and each module performs a
specific function. Different tools can be used to perform the function of each
module depending upon the analytical requirements established by the issue to
be examined. Figure 2-1 shows the various modules and their interrelation. A
brief description of the modules follows. The optimization module is described
in detail in Chapters 3, 4, and 5. For a more complete description of VAA, see
Koury. 12

ISEDEFINITION

MODULEMODULE

EFFECTIVENESS EFFECTIMIVENONS

INTEGRATION MODULE
MODULE

ASSET ALLOCATION MODULE

FRESULTS & DISPLAY MODULE

Figure 2-1. VAA Modules
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2-2. ISSUE DEFINITION. The purpose of the Issue Definition Module is to
refine the problem and its associated elements to be studied so that the data
collection and analysis efforts can be focused on the questions and issues of
interest to decisionmakers. Issue definition is a process that continues for the
duration of the Value Added Analysis. It establishes the general context of the
study in terms of the systems and programs to be analyzed, as well as
timeframes and scenarios of interest. The module also encompasses the
process of clarifying the specific questions asked by the decisionmakers.

2-3. EXPLICIT AND IMPLICIT EFFECTIVENESS. Systems effectiveness is
measured in two ways. In the Explicit Effectiveness Module, the systems of
interest are portrayed in a combat simulation, and their contribution to force
level performance is measured. Not all pertinent criteria that bear on the
procurement decision are measurable in this manner. The purpose of the
Implicit Effectiveness Module is to quantify these hard-to-measure factors.
These factors might include political risk, impact on sustainability, and
programmatics, as well as other criteria that cannot be directly measured at
present. Evaluations are made by individuals who are experts in these
criteria. The criteria are assigned weights of relative importance based on a
survey of senior Army decisionmakers. Subject matter experts then evaluate
(score) how well a system fares in light of these criteria.

2-4. EFFECTIVENESS INTEGRATION. When the programs of interest are
finally evaluated, a vector of effectiveness scores for the various criteria is
obtained for each system. The purpose of the Effectiveness Integration Module
is to reduce this vector of information to a single measure. The Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS) is currently used for
this purpose. This method is described in detail by Hwang and Yoon.7 The
single measure obtained for each system can then be used to compare the
systems in question with respect to their effectiveness. These measures are
used to form the objective function coefficients for the VAA optimization.

2-5. COST. Parallel to the determination of the effectiveness of the system in
question is the determination of system costs. A complete analysis of all the
life cycle costs for each system is performed. For the purpose of developing an
acquisition strategy, the portion of the life cycle cost of interest is the funds that
would be available for research, development, and acquisition (RDA). In the
cost module, data are also collected describing the various components of the
RDA costs: fixed costs, variable costs with learning curve effects, and variable
costs without learning. These are the costs that are used to build the budgetary
constraints for the VAA Optimization Module.

2-2
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CHAPTER 3

OBJECTIVE FUNCTION AND BUDGET CONSTRAINTS IN VALOR

3-1. INTRODUCTION

a. As mentioned, the purpose of VALOR is to produce a "good" and feasible
acquisition strategy for the procurement of weapon systems and equipment
over a 1,5-year period. This model utilizes a formulation similar to those of
Phoenix and FOMOA and can be represented as follows.

Maximize: Force effectiveness
Subject to: Budget ceiling

Force structure requirements
Production limitations

b. Since the VAA methodology was designed to provide analytical support
for the Planning, Programing, Budgeting, and Execution System (PPBES) of
the Army Staff, accurate representations of the various categories of
constraints are required. Particularly important are the cost values that are
used in the budgetary constraints. Thus arose the need for the model to relate
cost with quantity automatically as the algorithm is performed. The method
developed to incorporate learning curve costing into the optimization
formulation is presented in this chapter.

3-2. OBJECTIVE FUNCTION. The objective of VALOR, and indeed the Value
Added Analysis in general, is to suggest a mix of systems for procurement
that will be as effective as possible in combat, subject to constraints on budget,
force structure, and production capabilities. The effectiveness of the various
candidate systems is evaluated and quantified in the Explicit and Implicit
Effectiveness Modules of the VAA methodology, and these various measures
are integrated using TOPSIS in the Effectiveness Integration Module. The
result is a single measure of a system's contribution to the effectiveness of the
overall force for each year the system will be in the force. This measure is
then used to form the objective function coefficient, vu, which is the per-item
contribution of the system to force effectiveness. Let xu be defined as the
quantity of system i procured in year j, where j=l,..., n, with n being the
number of years in the planning horizon. The objective function can then be
written as

n m

Maximizes I viixij
j-li-1

We will consider m systems in the analysis.

3-1
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3-3. BUDGETARY CONSTRAINTS

a. Introduction. We note at the outset that there will be a separate
budgetary constraint for each year in the time period of interest for the study.
Funds designated for use in a particular year cannot be carried over into
following years. The model will maximize effectiveness which is accumulated
in the objective by the procurement of equipment through the expenditure of
funds. The funds available in each year will be specified in these budgetary
constraints, so the accuracy of the various cost componests is extremely
important to obtaining a valid solution. In this section we develop an
approximate method for representing the learning curve costs that will ensure
this accuracy.

b. Notation. We introduce the following notation.

q - average cost of a unit of system i in year j,

Q- - lot midpoint for system i in year j,

Ai - first unit cost of system i,

bi - cost / quantity slope coefficient,
xij - number of system i produced in year j,

Y- - cumulative number of system i produced through year j

jI Xik,

k=1
cij = average cost of a unit of system i when yij items are made in

one lot,
Bj = total procurement budget available in year j,

n = number of years in planning horizon, and
m = number of systems to be considered.

c. Formulation of the Budget Constraint

(1) Using the power form of the learning curve, we have the following
expression for the average unit cost for system i in year j, when we consider
the quantity manufactured in year j as the "lot" for that year.

Cij M AiQij- bi , where

% - lot midpoint = F ij + L U +  2 ,with
4

3-2
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Fij= accumulated number of the first item of type i produced in year j, and
Lu = accumulated number of the last item of type i produced in year j. We
note here that this lot midpoint formula is itself an approximation. However
its use is extremely common, and the derivation of the learning curve
parameters were based on this formula. Therefore, we constrained ourselves
to its use to insure consistancy with the given data. Noting that Lj = Yij-1 + xij
and Ft = Yij-1 + 1, we have -b

Yij-+ 1+ Yij-1 + xij + 2 (yij_ + 1)(Yij_l + xij) bcu " Ai 4 J (2)

Thus, if we consider only the learning curve components of the costs, the
budget constraint would take the following form:

iAi +i4 <Bj, j = i,...n.
4(3)

(2) Ideally, this nonlinear form of the constraint would be used in the
optimization. However, the size of the problem makes this approach
impractical. Each term of these constraints is a function of several decision
variables, making it impossible to approximate the function in a piecewise
linear manner. Separability is required for this type of approximation.

(3) In order to overcome the problem of the terms of the constraints not
being separable, the approach will be to reformulate the constraint in a way
that will make the terms separable, and then correct for any error that arises
as the result of the change in form of the constraints.

(4) We would like to find an expression for the cost term that is
separable. Consider the following approximation. Let

c~j -A i  4,(4)

the average unit cost of making yij items in one lot. This expression is
different from the one in (2) because it ignores the individual years and takes
the entire production quantity as one lot. Now, noting that xij = yij - yij-1,
rewrite the budget constraint as

3-3
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m(cby - cij-iyU.i) B, .
i-i (5)

where
cb-1 a 0

when j=1 orj represents the first year of production. Notice that (4) is
equivalent to (2) for the first lot.

(5) We now examine the difference between the constraints in (3) and
those in (5). Our purpose is to make an adjustment to (5) so that it will be
equivalent to (3). Then, using Yij as the decision variables, we will have
separable terms in the budget constraints that can be approximated in a
piecewise linear manner. For each system, i, we have

cijYij - cjj.-lYjj.-1 22 cij(Yij_ 1 + xij) - cij..lyij1
- cijxij - (cij - cij-1)yij-1" (6)

Letting

ci - j + Kb, where Kb is the difference between the two costs, (7)

we then have

cijYj - cij-lyij-1 - (Cij+ ij)xij - (cij-1 - cij)Yij-l1

-ijxij + gijxij - (cb.'l - cij)yij- 1.  (8)

Therefore, the original and exact constraint (3) is shown to be equivalent to a
corrected version of (5) as follows.

I ix Bj ml cijy - cj..yj.1 - (Kijxij - (cij.i - cjj)yj...) :s B3
i-1 i-1 (9)

So, in order to achieve this equivalence, we have introduced the correction
term

Dij = Kijxij - (cij.1 - cij)yij-l. (10)

We note that Dij = 0 for the first year of production because Kij = 0 and yij-1 = 0
in that time period.

d. Characterization of the Correction Term

3-4
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(1) The question remains, are we any better off now than we were
before? Although the costs are now functions of only one decision variable,
allowing for piecewise linear approximation of the nonlinear function, we still
have the error correction terms, Dij, i = 1,..., m, j = 1,..., n, which are even
more complicated functions of the quantity variables. We now examine these
terms. Recall that

Dij = Kijxij - (cij-I - cij)yij-l.

Expanding, we have

( 1+ Yij + 2Y - i  ( 1.Yij- 1 *2 Yt-I 1 -b

D iJ 4 J yij -Ai 4 j Yj-1

J xii"
4

(11)

Examining these terms, we have observed the following. First, that these
correction terms are very small in magnitude when compared with the cost of
producing the corresponding item of equipment for a year, i.e.,

c xb >> Kijxb - (% ci)yj-l.

Thus, the terms of (11) almost cancel each other out over the relevant range of
the parameters describing the learning curves for systems we have
encountered so far. Second, we have noted by examining the learning curves
for the systems that are candidates for procurement in the VAA Study that the
proportion of the difference between the cost of producing the cumulative
number of items as one lot through year j and that of year j-1 formed by Dij is
almost constant. That is, letting Mij be this correction proportion, we have

M -i constant,cbYb - cij lYi- 1 (12)

for given values of Ai and bi for all but the first year of production, over
relevant ranges of xij for all the systems that we have seen. An exception
exists in the first year of production. In that year, Mb = 0 since the
approximation is exact. Figures 3-1a and 3-1b give examples of these
observations for two systems whose costs were described by learning curves in
the Value Added Analysis.

3-5
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6.00%

5.00%

4.00%

3.00% * Value based on max

production qty

23 Value based on min

1.00% production qty

0.00% 3 I I I I I I I i I I
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Figure 3-a. Example of Mij Values (Ai=3.28, bi=.258)
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Figure 3-1b. Example of Mu Values (Ai= . 1796, bi=.1901)
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(2) Figure 3-1a shows an example of a learning curve system that has a
fairly severe curvature. Note that even in this extreme case, the worst case
error is small. Figure 3-1b represents a more typical case where Mij is almost
constant over the years. The consistency of these values is surprising, since
the yearly quantities vary from 1,200 to 20,000.

(3) We estimate the value of each correction proportion, Mij, by
computing the upper and lower feasible cumulative production quantities, yij,
that arise by summing the corresponding maximum feasible values of the
production quantities, xik, k=1,...j, and summing the minimum feasible
values of those same quantities. So we have

y e[Yijmin ,ybmax I where

J J
YJmin - Xikmin andYijmax Xikmax"

k-i k-i

Using (10) and (12), and substituting Yijmin and Yij-1min for yij and yij-1,
respectively, we obtain Mijmjn. Following the same procedure, but this time
using the maximum values of yij and yij-1, we get Mijmax. Empirically, we
have found that the arithmetic average of these two quantities gives a good
value for Mt. That is

Mijmax + Mijmin
2 (13)

Using this method, we note that the error for each production year by applying
this correction would be less than 1 percent for the system shown in Figure
3-1a, and within 2 percent for all the candidate systems examined in the VAA
Study.

(4) We can now rewrite the learning curve cost terms (3) using (13) in

the following manner. For each year j, we have:

m mcijxij sBj-* j( cijcij -cbij-1j~) Bj.

i-i i-i (14)

By using this approximation and by using yi as the decision variable, these
learning curve terms become separable, and although they are still nonlinear,
they can be dealt with using a piecewise linear approximation.

(5) We check the computed cost of the program using the cost formula
in (2). We have found that the amount by which the approximate cost deviates
from the true cost is within 1 or 2 percent for each year. This amount of error
is well within that of the available data.

3-7
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e. Piecewise Linear Approximation of Learning Curve Term

(1) Now that the learning curve cost terms have been made separable,
we can approximate them as a sequence of linear pieces. The technique used
here is standard and is described by Bradley, et al. 1 Recall that each cost term
is of the form

f (Yij) = Ai|+Y Fi i.

4 
(15)

This function is graphed for one of the systems included in the Value Added
Analysis, and is shown in Figure 3-2. This system is the same one that was
discussed with regard to Figure 3-1(a).
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Yij (cumulative quantity)

Figure 3-2. Piecewise Approximation of Cost Curve

(2) It is easy to show that this function is concave. It is also very
smooth. We have found that over the range of possible values of yij that the
number of segments needed to approximate this curve varies depending on the
parameters of the learning curve and the range of feasible values for yij. The
relevant range of Yij is defined as follows. The minimum value of Yij is the
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minimum production quantity in the first year of production. Define this
quantity as Rijo. The maximum value of yij is the sum of the maximum
production quantities over all the years of production. Define this maximum
quantity as ijp, where p = the number of segments in the approximation.

(3) To find the end points of the line segments that approximate f(y ),
we find that values of yij, 9ijJ., [ij2, ... ,Rjp. such that the following
relationship of the derivatives holds.

f '(ptij1) - f '(Rtij0) = f '(tij2) - f '(Rijl) = • = f '(9jp) - f '(Ptijp.1).

(4) Next, we define the following variables.

8ijk = the amount greater than Rtijk, where

0 ' 8ijk 5 ijk- tijk-1; k =1,...,p;

so that
ni =  tib0 + 8iji + ... + Nip. (16)

{l, if 6 ijk P- ijk - Rbk_ 1,
Wjk =0, if 6bk < Rijk - Rijk-1 (17)

(5) The purpose of these binary variables, wijk, is to ensure that bijk
will never be positive unless 8ijk-1 is at its maximum, for 2 s k :. p. These
conditions are enforced through the use of the following constraints.

( ijl- RijO)wijl ijl 9jl - RUO,

(tij2 - Jlijl)wU2 r 8 ij2 s (itij 2 - Rijl)wijl,

(I'tip-1 - Itijp-2)Wijp-1 S 6 ijp.s (1tijp-1 - Rijp-2 )wijp- 2 ,

0 S 6ijp  S (ptijp - Rij p _  )Wijp- 1 (18)

(6) Notice that the binary variables, Wijk, act as switches for the 8 ijk
variables such that, when 6 ijl is pushed to its maximum allowable value, I.Lij
- tijo, wijl is toggled from a value of 0 to a value of 1. Thus, 6 ij2, previously
constrained to be zero, is allowed to grow toward its own maximum value.
Now, calculate the slopes of each segment. Let
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Pijk - I.ijk-1 
(19)

Then we can approximate each cost term as

p
ciyt = f(Yi)- f(RiJO) + 2Sijk~tk,

k-1 (20)

with the additional constraints that

P
YJ - ijO + >5ijk, Vi,j.

k-i (21)

The approximation in (14) is then written as

I-i -MU)(f(RbO)+ k-i (A- 0
JSjkbjjkf(Lj.i) jSb-1ik6 Uk) :r(22)

k-1 k-1 (22)

with constraints (18) and (21), and using the convention that RiOO and 6ioo are
defined to be zero.

(7) Finally, there is no need to explicitly use the yij variables. Rather,
we impose the following constraints to relate the xij variables with the bij
variables. Recalling that

J
xij = Yij, and using (21), we have

k-1

J P2xij - I ij0 + 2 6ijk'

k-i k-1 (23)

(8) This approximation, then, introduces 2 p-1 variables, of which p-1
are binary, and 2p constraints to the formulation of the problem for each yu
variable. The dimensionality of the problem is thus greatly increased.

f. Systems without Learning Effects. Not all the systems that are being
evaluated exhibit learning behavior. For these systems, an average unit cost,
4j, is specified for each year of production. The cost term associated with
these systems have the form 4jxij, for each year, j, that system i is produced.
These terms are then included in the budgetary constraints for appropriate
years. Some systems have a component of cost that is more appropriately
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described as a "nonlearning" variable cost. For these instances, the cost of the
system can be described as having both a learning and nonlearning
component, and the term jxjj can be introduced together with the learning
cost in the budgetary constraint.

g. Consideration of Fixed Costs. Some costs, such as research,
development, test and evaluation (RDTE), Rij, expenditures, or nonrecurring
fixed manufacturing costs, Vu, are not incurred on a per-unit basis. These
costs simply reduce the funds available for procurement (lower the values of
the Bj) over the years they are expended. However, when the model is used to
evaluate cuts or cancellation of programs, significant savings can be accrued
by recouping the RDTE or other fixed cost funds that have not yet been spent.
Thus, these costs must be tied to the programs being evaluated in a
meaningful way. The discussion of how to handle the evaluation of potential
program cancellations will appear later in this paper.

h. Production Campaigns

(1) Typically, each system is not procured in every year of the planning
horizon. We want to be able to handle the situation in which the various
systems are produced in only a subset of the years in the planning horizon. We
assume that the years of production for each system, the so-called production
campaign, is given and fixed. This assumption represents a simplification of
the formulation used in the Phoenix Model which allows the optimization to
pick the best production campaign for the systems. Extending the VAA
optimization formulation to choose an optimal production campaign for each
system will be left as future work.

(2) In order to make this modification, we introduce the following
notation. Let ti = first year of production of system i, and let ni = number of
years in production campaign for system i. Then define set Ij such that

Ij = (i E {1,..., m : system i is produced in year j}.

Including fixed and nonlearning costs, the constraints (22) and (23) become

[ (1-M..f4Ri.2) 5 jkOk- f(4.Lj.l) - Siikji + jxuj]
uLluO k-1 k-i

+ (Rij + V <BVj=,...,n,

J1 p

XxU- tAUo+ 8Uk, for all ti j ti +ni-1, for all i 1,...,m.
k-ti k-1 (24)
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with constraints (18), and using the convention that kioo and 8ioo are defined
to be zero. One of these constraints will appear for each year in the planning
horizon. We note here that Rij and Vi will be zero in years that no such costs
exist.

3-12



CAA-TP-92-1

CHAPTER4

OTHER FEATURES OF THE VAA OPTEMIZATION MODEL

4-1. INTRODUCTION. The quantities of items to be procured must be
consistent with requirements for these items in the various Army units as
specified in the given force structure. Constraints are also imposed on the
number of items that can be produced during each time period, which reflect
the capacity of the production facilities. Both force structure and production
constraints are explained below. In addition, the optimization must be used to
evaluate program cuts and fund reallocation. The scheme used to facilitate
these analyses is also described in this chapter.

4-2. FORCE STRUCTURE REQUTREMLNTS

a. Introduction. Force structure requirements drive the decisions of how
many of a particular item of equipment should be procured, and on the
identification of the particular Army units that will receive the equipment
when it is fielded. In order to make these decisions, a set of four force
packages is identified. Force Packages are prioritized groupings of units that
specify the order in which newly procured equipment is fielded. The units
contained in Force Package I would be fielded first, followed by those in Force
Package II, III, and IV, as long as sufficient funds are available. The study
sponsor must specify the level of force structure to be considered. For example,
the sponsor might know that insufficient funds are available to buy enough for
all the force packages, so he may designate that Force Package I must be filled
with equipment for all systems, and that nothing would be procured beyond
those needed to fill Force Package II. Thus, the force structure bounds for
each system would be established. It would then be known what the minimum
and maximum allowable procurements are for each system by the end of each
system's production campaign.

b. Equal Quantity Representation. There are two ways to represent these
constraints in the optimization model. The first involves constraining each
year's procurement quantity of each system to be the following:

Fimi Fi max
Fmin x i , V systems i produced in year j, V j,
ni ni

where, for system i,

Fimin = minimum force structure requirement,
Fimax = maximum force structure requirement,
and ni = number of years of production.
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The advantage of this method is that the series of production quantities over
the production campaign tends to be more stable. From a practical standpoint,
avoiding wide swings in annual production quantities is desirable. The
disadvantage is that the constraint is tighter, limiting the flexibility of the
model to find a better solution.

c. Total Quantity Representation. The second option involves constraining
the sum of all items produced over the entire production campaign to be
between the force structure minimum and maximum. That is,

ti+ni-1
Fimin I >xii S Fimax Vi, j"

j-ti

where ti = the first year of production for system i. Constraints on the
individual xu's would be based on production capacities. These constraints
will be discussed later. This option allows for better solutions with respect to
the effectiveness objective but tends to give wide swings in the annual
production quantities. The decision regarding which of these schemes to use
rests with the study sponsor. We note that the choice of schemes can be made
on a system-by-system basis, maximizing the flexibility of the model. A
modification of this representation is the introduction of additional constraints
on the xb's that would be used to force a more stable stream of production
quantities. Letting Pi = the allowable variation in yearly production quantities,
and noting that we would not apply these constraints during ramp-up years,
these constraints would take the form

(1 - pi)xb. 1 !s xij :5 (1 + pi)xij. 1, Vi, V t i + 1:s st i + ni- L

In this case, the production quantity would be constrained to be within 1OOpi
percent of the previous year's quantity, avoiding undesirable swings in
production. Of course the selection of the percentage is arbitrary and can be
adjusted appropriately on a system-by-system basis.

4-3. PRODUCTION CONSTRAINTS

a. Introduction. The capacities of the various production facilities must be
considered in constraining the production quantities. Typically, the model is
constrained to produce at least the minimum sustaining rate (MSR) of
production and no more than the maximum production rate (MPR). The
minimum sustaining rate is defined as the production rate needed to keep the
production line open while maintaining a responsive vendor and supplier
base. The MSR is frequently equated to maintaining a warm production base.
The MPR is the production rate which maximizes the production capacity of
existing tooling or facilities without requiring additional investment to
increase the capacity.
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b. Ramp-ups in Production. Most systems that are not yet in production at
the beginning of the planning horizon will have a ramp-up in production over
2 or 3 years where the production capacity is lower than the MSR. These
ramp-up years must be considered when constraints on the production
quantities are constructed. The ramp-up quantities would be reflected in the
bounds on the production quantities in the first few years of the production
campaign specified for the particular system in question.

c. Production and Force Structure. The production constraints must be
used in conjunction with the force structure constraints to develop the upper
and lower bounds of the production quantities, xU. When using the equal
quantity representation of the force structure bounds, some preprocessing is
required to ensure that these bounds are applied appropriately. Let

Pminij = lower production bound (MSR) for system i in year j,
Pmaxij = upper production bound (MPR) for system i in year j,
Fminb = lower force structure bound for system i in year j,
Fmaxb = upper force structure bound for system i in year j,
Uj = upper bound on xij for system i in year j, and
Lb = lower bound on xi for system i in year j.

The upper and lower bounds on xb are determined using the following rules.

(1) If Pmini s Fminb, then L =- Pminb.

(2) If Fminq s Pminij, then L = Fminb.

(3) If Pmaxi Fmaxi, then Uij = Fmaxij.

(4) If Frnaxi 5 Pmax, then Uij = Pmaxi.

(5) If Fmaxi s Pminq, then Lij = Uij = Pmini.

(6) If Fminb s Pmaxb, then Lb = Ui = Pmaxij.

Note that rules (5) and (6) address the problem of mismatch between the
production limitations and the force structure requirements. When these
conditions arise, it is prudent to reconsider the length of production campaign.
Note also that the above rules only apply to the first alternative for determining
force structure constraints. If the second alternative is employed, namely the
total quantity representation, the production bounds are used to bound xij's.
Care must be taken, however, to ensure that mismatches in the production
limitations and force structure requirements are resolved. Otherwise, an
infeasible program will result.
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4-4. EVALUATION OF PROGRAM CUTS

a. Introduction. As mentioned previously, we want the model to be useful
in analyzing program cut alternatives which arise during the building of the
Army program and budget. In order to do so, two factors must be considered.

(1) First, in order to determine if a system should be procured or not,
we must allow a disjoint feasible set. That is, systems that are candidates for
exclusion from the program (cuts) must be allowed to be procured in quantities
satisfying the above constraints or not to be procured. So both xb = 0 and
Lb e xb s U are allowed.

(2) Next, if some fixed costs, such as RDTE costs, are associated with
the procurement of the system, whose value is independent of the quantity
purchased, then they would also be saved if the procurement of the system is
canceled. Previously these costs were accounted for by simply subtracting
them from the budget in the appropriate years. Some mechanism was needed
to include them, or not, as appropriate.

b. Implementation. In order to implement this enhancement to the
model, we introduce binary variables defined as follows.

S1, if system i is procured,
= 0, otherwise.

We then modify the constraints on the xij's as follows.

L~ju i :9 xj :5 Uui.

We note that when system i is procured, the ui = 1, and these constraints
become equivalent to those previously discussed. When ui = 0, then the value of
xij is constrained to be zero also.

c. Fixed Costs. This binary variable can also be used to switch on and off
the fixed costs in the budget constraints. We modify the budget constraint for
year j to be the following.

Ui 4+ ijk 8ijk - k-i j i1k)+
S( i~ Rj)ijk j- f (Rij- 10 )ui 8 1SJl~jl ijxij

i~j k=l

+ i (Rijui + Vijui) < Bp•

We note that if ui = 1, then the available funds for year j are effectively reduced
by the amount of fixed cost expended in that year. If ui = 0, then no such
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deduction is made. Thus, the RDTE and fixed costs are only included if the
system is procured and are ignored otherwise.

d. Combined System Procurements. Another important use of these
binary ui variables is to constrain the model to procure systems in
combinations. For example, suppose we are considering the procurement of a
new artillery system and a resupply vehicle that will carry its ammunition.
We may want to constrain the model to refrain from procuring the resupply
vehicle unless it procures the artillery system as well. By introducing the
following constraint, we can force the model to relate these systems as
described above.

Ure supply - Uartillery : 0.

This constraint ensures that the binary variable associated with the artillery
system is greater than or equal to that of the resupply vehicle. Thus, the
unreasonable result of procuring the resupply vehicle without the artillery
system is avoided. The introduction of this type of constraint in various ways
allows the analyst to evaluate different combinations of systems.

e. Multiple Production Campaigns. We have previously assumed that the
production campaign for each system was fixed. However, we can use the
binary ui variables to evaluate multiple production campaigns. We do this by
introducing the same system with several production campaigns. Then, to
ensure that the same system is not included in the program more than once,
we use the following constraint,

ul +u 2 +...+uk 1,

where k= the number of candidate production campaigns for the system in
question.
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CHAPTER5

IMPLEMENTATION AND PERFORMANCE

5-1. IMPLEMENTATION

a. Hardware and Software. The VALOR Model was implemented using
the IBM Optimization Software Library (OSL), 10 on an IBM RISC 6000 work
station. OSL, as the name suggests, is a set of subroutines that can be called to
manipulate and solve a variety of optimization problems. It can be accessed
through FORTRAN or C programming languages. The software is flexible
with respect to input and accepts either standard MPS input format or allows
direct access to the data structure to set up the problem.

b. Programming. We elected to write a front-end application program in
FORTRAN that reads the data, processes the data into the appropriate data
structures for the optimizer, calls the optimization subroutines, and then
prints the results.

5-2. PERFORMANCE

a. Early Tests. The first test problems with realistic data were of the order
of 700 rows with 800 variables, of which 350 were binary. This program
evaluated about 20 systems and took about 20 minutes of CPU time to run. The
model was also run using the system cutting feature; the running time
increased 25 - 50 percent. In these early tests, we limited ourselves to
evaluating only a small subset of the systems as candidates for elimination
from the Army budget, usually three or four systems. We found that
attempting to evaluate too many such systems greatly increased the run time.
Although the run time was increased for most of the runs in which this
feature was employed, there were instances where increase in run time was
minimal.

b. Preprocessing. OSL has the facility to preprocess a mixed integer
program to reduce the branch and bound tree. We tried preprocessing our
program, but no apparent economies were found. In fact, the procedure
increased the run time of the model. This increase could be expected, since the
preprocessing procedure itself has a processing time on the order of k2 to k3,
where k is the number of nonzero elements in the matrix. Since no economies
were found, this preprocessing was wasted time. Nevertheless, since the
processing time of the branch and bound algorithm itself is of the order of 2n ,

where n is the number of integer variables, the preprocessor was worth a try.

c. Performance Tuning. Although the internal OSL preprocessor failed to
find any adjustments to the formulation that would improve its performance, a
close examination of the structure of the formulation yielded several
performance enhancing adjustments. It is known that to improve the
performance of a mixed integer program, efforts that reduce the separation
between the solution of the linear programming relaxation of the problem and
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the integer solution will improve performance. Also, the power of a branch
and bound algorithm can be enhanced if relationships between the integer
variables are exploited. In order to accomplish these objectives, additional
constraints are introduced. A good discussion of the techniques used to
identify the additional constraints is given by Johnson and Nemhauser.9

d. Strong Inequalities. The first set of constraints introduced was based on
the relationship between the binary variables that are used to implement the
piecewise linear approximation of cost curve. Recall that we include a cost
curve for each system i for each year j of production, introducing several
binary variables, wijk, into the formulation, the number depending on the
number of linear pieces employed in the approximation. Since the cost curves
are based on the cumulative quantity of system i procured over the years, yij,
we know that yij -> yij-1. Thus, since

PYij = Atij0 + I 5ijk, Vi e Ij, j =1.,n,

k=1

we know that Bijk -> 8ij-lk for all j > t. Therefore, we can impose the
following constraints on the wijk binary variables.

wijk - wij-lk; for all j > ti, i = 1,...,m, k = ,...,p.

This relation between the wijk variables is implicit in the formulation as it has
been presented. However, if these constraints are not explicitly imposed, the
branch and bound algorithm will branch on each binary variable separately.
When these constraints are imposed, branches become much more powerful
in the sense that setting one variable to the value 0 potentially sets many others
as well. Similarly, we see immediately that all the wijk variables will be 0
unless the ui variables are set at 1. So, another set of constraints that is
implicit in the formulation but whose explicit inclusion improves the
performance of the algorithm are expressed as follows:

ui 2t wijk, for all j > ti, for all i = 1,...,m, k = p

These constraints ensure that all wijk variables are set to 0 if ui is 0, making
branches on the ui variables very powerful. Approximately 500 additional
constraints were added to the formulation.
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e. Improved Performance. As the result of the additional constraints, the
performance of the model was much improved. Final test runs as well as the
production runs were significantly larger than the initial tests that were
performed. Ultimately, 45 systems were analyzed, of which 22 had learning
curve costs. The mixed integer program had about 4,000 rows with 3,000
variables, of which about 500 were binary integers and 5,500 nonzero elements.
The run time for this improved formulation was reduced to between 2 and 13
minutes of CPU time on the IBM RISC 6000 320H. Another important aspect of
this improved formulation was that we were no longer limited to evaluating a
small subset of systems as candidates for elimination. We were able to make
the procurement of all the systems optional. This capability became very
important in the conduct of the Value Added Analysis, since the main
emphasis was on identifying funding tradeoffs among the candidate systems.
Without the performance-enhancing modifications, the model would not have
been as responsive as was necessary to provide the required analytical support.
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CIWATER 6

CONCLUSIONS

6-1. METHODOLOGY AND COMPUTER RESOURCES. The methodology
introduced in this paper seems to do a good job of incorporating the learning
curve effects on costing into the budget constraints of the Value Added
Analysis acquisition strategy optimization. The introduction of this feature
greatly increases the computational overhead associated with solving
problems of this nature. As a result, implementation of this enhancement to
acquisition strategy models requires significantly increased computing
resources to obtain a solution.

6-2. APPROXIMATION. This methodology is an approximation, and checks
are necessary to ensure the approximation is accurate enough. In our
experience, the approximation has yielded results in which the expended
program dollars, calculated using the nonlinear cost function and the
optimized quantities, were within 2 percent of the nominal value. Considering
the approximate nature of costing systems that will only be procured in the far
distant future, 2 percent is adequate. In applications that require more
accuracy, the approximation can be made more nearly exact by increasing the
number of pieces in the piecewise approximation.

6-3. APPLICATION. The use of this methodology has been shown to improve
the quality of the optimization for the purpose of acquisition strategy. In this
era of tightly constrained budgets for procurement, accurate costing is
essential to get the most from limited funds. This methodology has enhanced
analytical efforts that help accomplish this task. This optimization model was
successfully used to assist the Army Staff in evaluating the various alternative
weapon systems considered for procurement. The model was particularly
useful in identifying the years in which budget constraints were extremely
tight with respect to planned production campaigns, suggesting modifications
that could be made to proposed programs. The model was also extremely
useful in identifying systems that were excluded from the solution when other
systems, or combinations of systems, were forced to be procured. This
capability gave the leadership a window into the cost of their decisions as they
related to system tradeoffs.

6-4. CONCLUSION. VALOR has provided a new dimension to the PPBES
process for the Department of the Army Staff. The staff now has available in a
single model the capability to pull together data, policy, and guidance quickly
and accurately in order to develop a balanced Army program.
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(3) Implement performance-improving measures to speed the solution of the
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(4) Report on the performance and characteristics of the model
Implementation.

THE SCOPE OFTHE PAPER was limited to analysis of the major item systems
under consideration for procurement in the Army Program Value Added Analysis
94-99 (VAA Phase I) Study.

THE MAIN ASSUMPTION of this work is: learning curve costs can be
described as an exponential function of the cumulative number of items
produced.

THE BASICAPPROACH used in this analysis was to formulate a MIP with the
objective of maximizing the effectiveness of the force subject to constraints
on budget, force structure, and production capabilities. Additional
constraints were added to improve computational performance.



THE PRINCIPAL FINDINGS of the work reported herein are:

(1) Approximate nonlinear learning curve costs can be calculated in a
mixed integer programming algorithm.
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(MIP) formulation was devised for this purpose.

THE SPONSOR was the Director, US Army Concepts Analysis Agency.

THE OBJECTIVES were to:

(1) Identify the need for dynamic learning curve costing in acquisition
strategy optimization.

(2) Formulate a specific NIP for computer solution.

(3) Implement performance-improving measures to speed the solution of the
model.

(4) Report on the performance and characteristics of the model
implementation.

THE SCOPE OF THE PAPER was limited to analysis of the major item systems
under consideration for procurement in the Army Program Value Added Analysis
94-99 (VAA Phase I) Study.

THE MAIN ASSUMPTION of this work is: learning curve costs can be
described as an exponential function of the cumulative number of items
produced.

THE BASIC APPROACH used in this analysis was to formulate a MIP with the
objective of maximizing the effectiveness of the force subject to constraints
on budget, force structure, and production capabilities. Additional
constraints were added to improve computational performance.

IL ,' |lm m mmmmmmmmmmmmmmm m m mm .. ...



THE PRINCIPAL FINDINGS of the work reported herein are:

(1) Approximate nonlinear learning curve costs can be calculated in a
mixed integer programming algorithm.

(2) The performance of the mixed integer programming model used for cross
mission area acquisition strategy is such that extremely fast response can be
given to "what-if" type questions from study sponsors.

THIS EFFORT was directed by LTC Andrew G. Loerch, Force Systems Directorate.

COMMENTS AND QUESTIONS may be sent to the Director, US Army Concepts
Analysis Agency, ATTN: CSCA-FSR, 8120 Woodmont Avenue, Bethesda, MD
20814-2797.
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THE REASON FOR PERFORMING THIS RESEARCH was to formulate a math
programming algorithm that could be used to perform acquisition strategy
optimization that dynamically incorporates nonlinear "learning curve" costs
for use in Value Added Analysis. An approximate mixed integer programming
(NIP) formulation was devised for this purpose.

THE SPONSOR was the Director, US Army Concepts Analysis Agency.

THE OBJECTIVES were to:
(1) Identify the need for dynamic learning curve costing in acquisition

strategy optimization.

(2) Formulate a specific NIP for computer solution.

(3) Implement performance-improving measures to speed the solution of the
model.

(4) Report on the performance and characteristics of the model
Implementation.

THE SCOPE OFTHE PAPER was limited to analysis of the major item systems
under consideration for procurement in the Army Program Value Added Analysis
94-99 (VAA Phase II) Study.

THE MAIN ASSUMPTION of this work is: learning curve costs can be
described as an exponential function of the cumulative number of items
produced.

THE BASICAPPROACH used In this analysis was to formulate a NIP with the
objective of maximizing the effectiveness of the force subject to constraints
on budget, force structure, and production capabilities. Additional
constraints were added to improve computational performance.



THE PRINCIPAL FINDINGS of the work reported herein are:

(1) Approximate nonlinear learning curve costs can be calculated in a
mixed integer programming algorithm.

(2) The performance of the mixed integer programming model used for cross
mission area acquisition strategy is such that extremely fast response can be
given to "what-if" type questions from study sponsors.

THIS EFFORT was directed by LTC Andrew G. Loerch, Force Systems Directorate.

COMMENTS AND QUESTIONS may be sent to the Director, US Army Concepts
Analysis Agency, ATTN: CSCA-FSR, 8120 Woodmont Avenue, Bethesda, MD
20814-2797.


